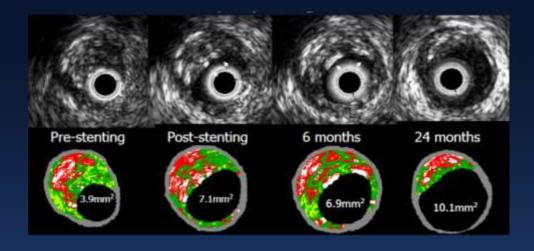
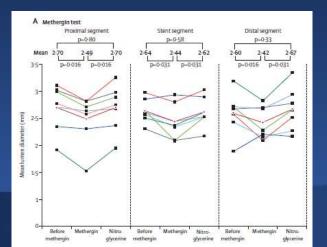
Updated meta-analysis for bioresorbable scaffolds: sum up many, many meta for BVS

Tullio Palmerini
University of Bologna
Italy

Conflict of interest

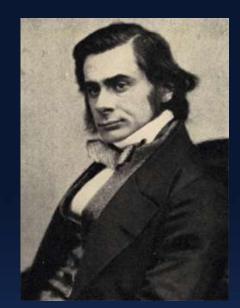
Leture fees from Abbott


BVS: the promise of a golden tube and plaque regression

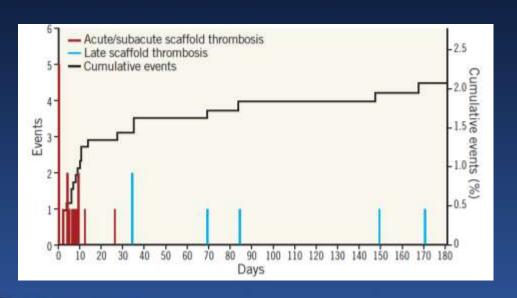

Golden tube

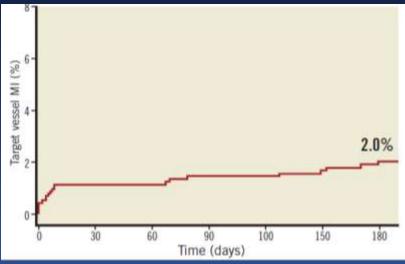
Output

O


Plaque regression

Restoration of vasoreactivity


The great tragedy of science - the slaying of a beautiful hypothesis by an ugly fact.



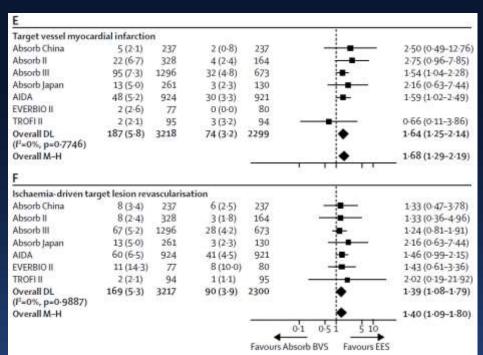
Thomas Huxley

Percutaneous coronary intervention with everolimus-eluting bioresorbable vascular scaffolds in routine clinical practice: early and midterm outcomes from the European multicentre GHOST-EU registry

Davide Capodanno¹, MD, PhD; Tommaso Gori², MD, PhD; Holger Nef³, MD; Azeem Latib⁴, MD; Julinda Mehilli⁵, MD; Maciej Lesiak⁶, MD; Giuseppe Caramanno⁷, MD; Christoph Naber⁸, MD; Carlo Di Mario⁹, MD; Antonio Colombo⁴, MD; Piera Capranzano¹, MD; Jens Wiebe³, MD; Aleksander Araszkiewicz⁶, MD; Salvatore Geraci⁷, MD; Stelios Pyxaras⁸, MD; Alessio Mattesini⁹, MD; Toru Naganuma⁴, MD; Thomas Münzel², MD; Corrado Tamburino¹, MD, PhD

Seven trials with BVS including 5,583 patients

Study	Year	N of pts	Device used	Latest fup	ACS	Primary endpoint
ABSORB China	2016	480	BVS vs CoCr-EES	3 years	65 %	1-year LLL
ABSORB II	2016	501	BVS vs CoCr-EES	4 years	21%	3-year vasomotion
ABSORB III	2017	2008	BVS vs CoCr-EES	3 years	25%	1-year TLF
ABSORB JAPAN	2016	400	BVS vs CoCr-EES	3 years	13%	1-year TLF
AIDA	2017	1845	BVS vs CoCr-EES	2 years	54%	2-year TVF
EVERBIO II	2016	158	BVS vs PtCr-EES vs BES	2 years	40%	9-month LLL
TROFI II	2016	191	BVS vs CoCr-EES	2 years	100% (STEMI)	6-month healing score

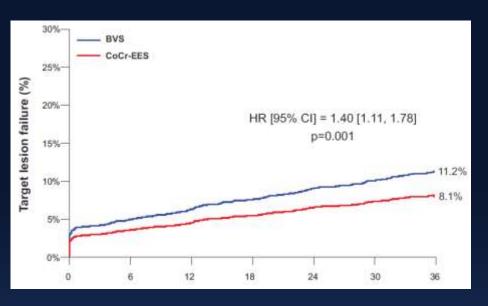

Author 14 meta-analys	Year is	N of trials	Type of analyses	Mean fup	ER
Cassese S.	2016	6 RCT	Aggregate data	12 mo	OR
Lipinski M.J.	2016	2 RCT + 23 registry	Aggregate data	6.4 ± 5.1 mo	OR
Zhang X.	2016	6 RCT + 38 registry	Aggregate data	10.5 months	OR
Stone G.W.	2016	4 RCT	IPD	12 months	RR
Ziad A Ali	2017	7 RCT	Aggregate data + IPD	24 months	RR
Montone R. A.	2017	7 RCT	Aggregate data	24 months	HR
Nairooz R.	2017	3 RCT 2 registry	Aggregate data	24 months	OR
Polimeni A.	2017	5 RCT	Aggregate data	24 months	OR
Sorrentino S.	2017	7 RCT	Aggregate data	24 months	RR
Zhang X.	2017	7 RCT + 38 registry	Aggregate data	25 months	OR
Toyota T.	2017	3 RCT + 4 registry	Aggregate data	24 months	OR
Mahmoud A.N.	2017	6 RCT	Aggregate data	25 months	RR
Ziad A. Ali	2018	4 RCT	IPD	36 months	RR
Kang Si H	2018	91 RCT	Network, aggregate data	42 months	OR

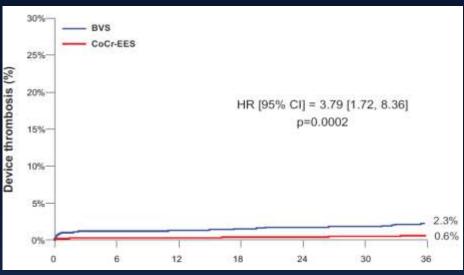
Summing up meta-analyses

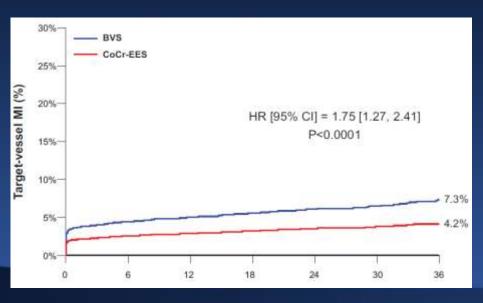
- No significant difference in mortality.
- Increased rates of stent thrombosis with BVS.
- Increased rates of MI with BVS (driven by higher rates of target vessel-related MI).
- Higher rates of TLF and ischemia driven TLR in some, but not all metaanalyses (depending on fup duration).
- Greater in-device late lumen loss.

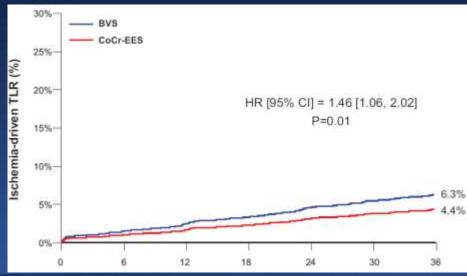
BVS vs metallic DES: 2-year outcomes

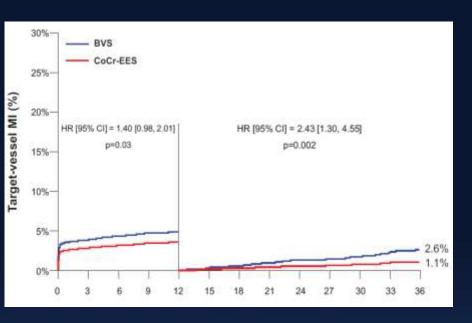
A	BVS	50 50	EES		Relative risk	Relative risk (95% CI)
	Events (%)	N	Events (%)	N	(log scale)	
DOCE						
Absorb China	10 (4-2)	237	11 (4-6)	237	-	0.91 (0.39-2.10)
Absorb II	26 (7.9)	328	7 (4-3)	164		1-86 (0-82-4-19)
Absorb III	141 (10-9)	1296	52 (7-7)	673	} ■	1-41 (1-04-1-91)
Absorb Japan	17 (6-5)	261	5 (3-8)	130		1-69 (0-64-4-49)
AIDA	91 (9-8)	924	78 (8-5)	921	+	1-16 (0-87-1-55)
EVERBIO II	16 (20-8)	77	13 (16-3)	80		1.28 (0.66-2.48)
TROFLII	3 (3-2)	94	3 (3.2)	94		1.00 (0.21-4.83)
Overall DL (P=0%, p=0-8504)	304 (9-4)	3217	169 (7-4)	2299	•	1-29 (1-07-1-55)
Overall M-H						1-29 (1-08-1-56)
В					ate test of	
Definite or probable	device throm	osis				- 5
Absorb China	2 (0-8)	237	0 (0.0)	231		
Absorb II	5 (1.5)	325	0 (0.0)	163	1	
Absorb III	24 (1.9)	1272	5 (0-8)	660		2.49 (0.95-6.50)
Absorb Japan	8 (3.1)	257	2 (1-5)	130		2.02 (0.44-9.39)
AIDA	31 (3-4)	924	8 (0.9)	921	-	3-86 (1-79-8-36)
EVERBIO II	1(1.3)	77	0 (0-0)	80	*	
TROFIII	2 (2.1)	95	1(1-0)	96		2-02 (0-19-21-92)
Overall DL (f ² =0%, p=0-8219)	73 (2-3)	3187	16 (0.7)	2281	•	2-99 (1-73-5-15)
Overall M-H					i +	3-35 (1-96-5-72)
-						

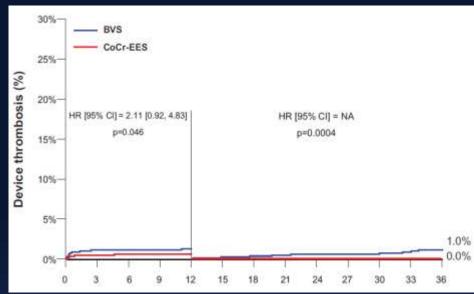


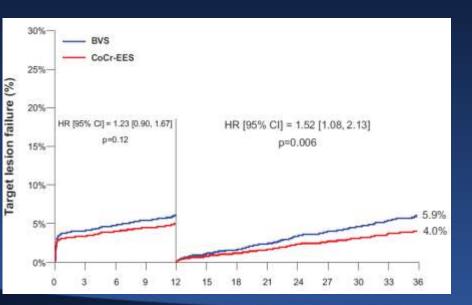

Three-Year Outcomes With the Absorb Bioresorbable Scaffold

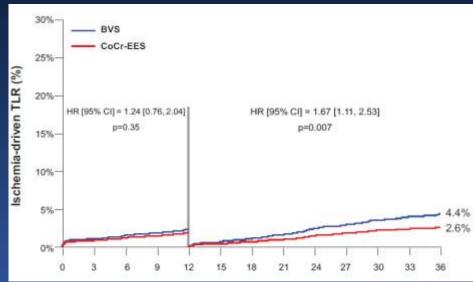

Individual-Patient-Data Meta-Analysis From the ABSORB Randomized Trials

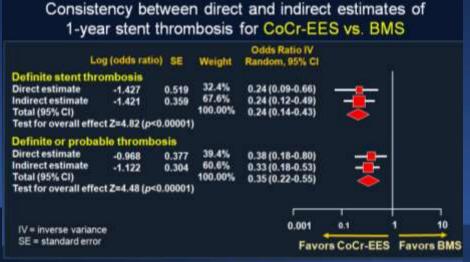

- Time to event curves to elucidate the temporal sequence of events.
- Multivariable analyses to identify independent predictors of outcomes.
- Consistency of treatment effect across subgroups of patients

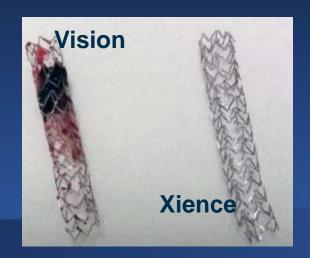

IPD from 4 ABSORB trials and 3,389 pts



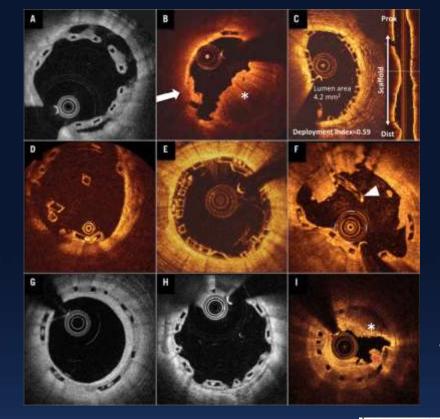


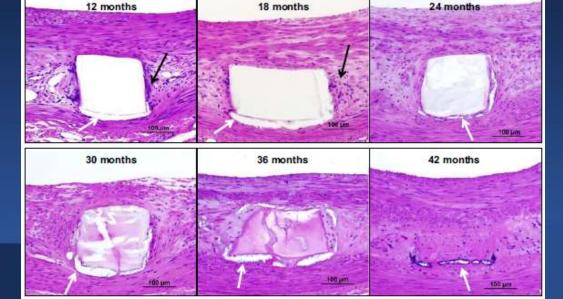





Ali et al; Circulation 2018

Increased 1-year rates of thrombosis and MI




Palmerini T et al. Lancet 2012

Late strut discontinuity Endovascular dislocation

Sotomi et al; EuroInt 2017

Persistent inflammation up to 36 months

Otsuaka et al; Circ Cv Int 2016

Independent predictors of TLF and device thromboisis

·	Relative risk [95%CI]	P value
3-year cumulative		
Target lesion failure		
Pre-procedure RVD (2.25 mm vs. ≥2.25 mm)*	1.44 [1.14, 1.81]	0.003
Diabetes present	1.41 [1.15, 1.73]	0.001
Prior coronary interventions	1.41 [1.15, 1.73]	0.001
BVS (vs. CoCr-EES)	1.37 [1.09, 1.72]	0.005
Number of target lesions (2 vs. 1)	1.33 [1.03, 1.71]	0.04
Current tobacco use	1.25 [1.00, 1.57]	0.04
ABSORB China vs ABSORB III	0.50 [0.33, 0.76]	0.04
Device thrombosis		
BVS (vs. CoCr-EES)	3.95 [1.80, 8.67]	0.0006
Diabetes present	2.71 [1.62, 4.54]	0.0002
Pre-procedure RVD (<2.25 mm vs. ≥2.25 mm)*	1.90 [1.09, 3.32]	0.03

ABSORB IV design

2,604 pts with SIHD or ACS 1 - 3 target lesions w/RVD 2.5-3.75 mm and LL ≤24 mm Troponin pos ACS, thrombus and 3 lesions included

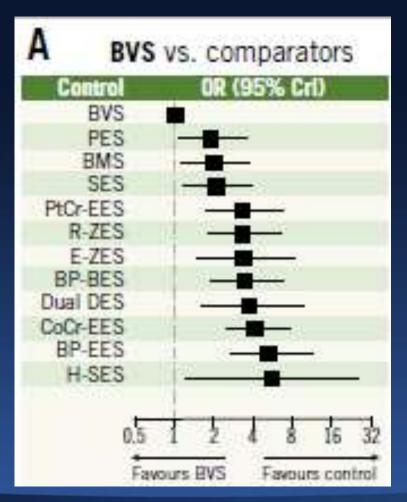
Compared to ABSORB III:

Randomize 1:1
Stratified by diabetes and ABSORB III-like vs. not

ABSORB BVS N=1,296

BVS technique:

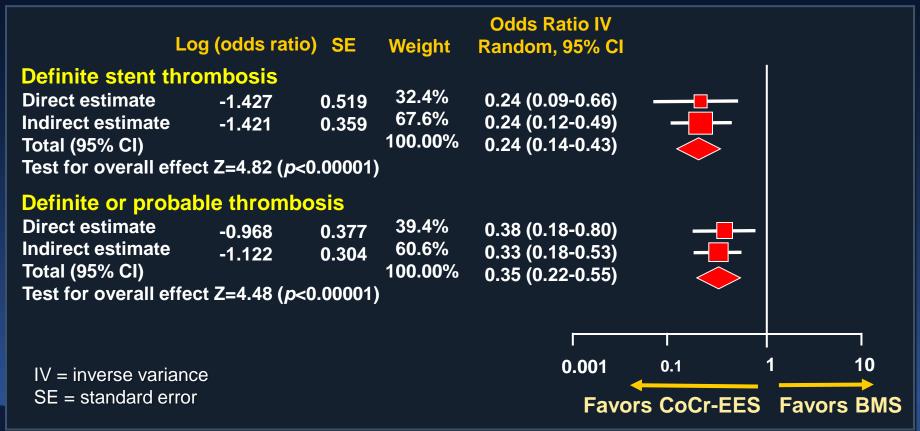
Pre-dil: 1:1; NC balloon recommended Sizing: IV TNG; QCA/IVUS/OCT strongly recommended if visually estimated RVD ≤2.75 mm and 2.5 mm device intended; <2.5 mm ineligible!

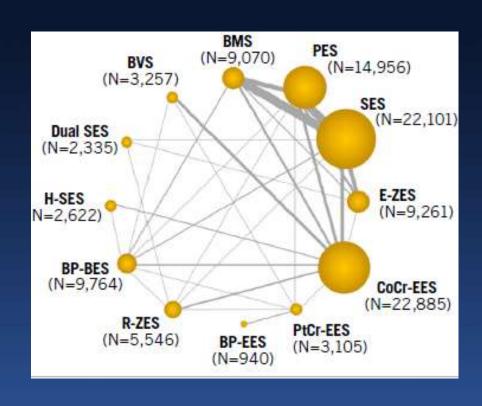

Xience EES N=1,308

Post-dil: 1:1, NC balloon, ≥16 atm strongly recommended

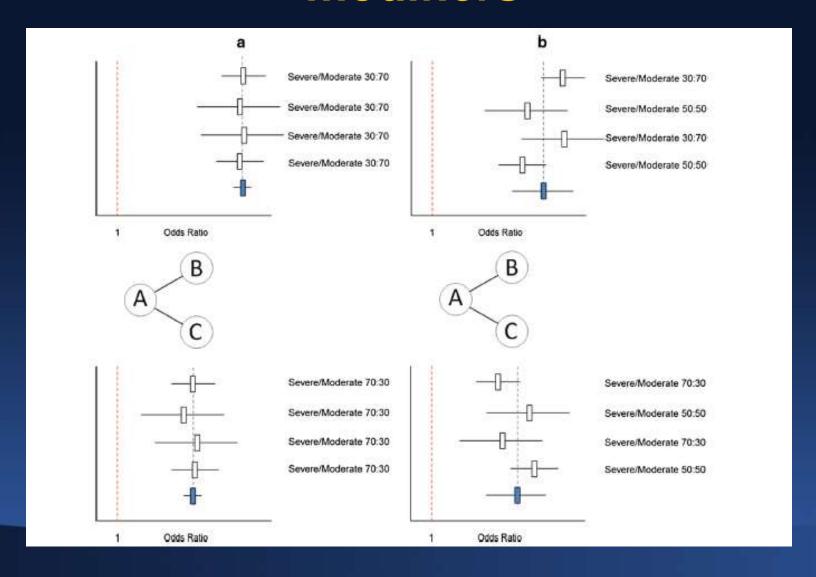
Subgroup analysis for TLF

Subgroup		% (n/N)	Absorb BVS (N=2164)	XIENCE (N=1225)	Relative Risk [95% CI]*	P value Interaction*
Pre-procedural variable	es					
Age	< median (63 yrs) ≥ median	47.6% (1610/3384) 52.4% (1774/3384)	11.1% (107/968) 12.4% (136/1101)	7.9% (45/571) 8.4% (50/596)	1.29 [0.93, 1.80] 1.45 [1.06, 1.97]	0.63
Sex	Female Male	27.5% (932/3384) 72.5% (2452/3384)	11.1% (63/570) 12.0% (180/1499)	8.8% (28/318) 7.9% (67/849)	1.18 [0.77, 1.80] 1.46 [1.12, 1.91]	0.44
Current smoking	Yes No	23.1% (781/3384) 76.9% (2603/3384)	14.3% (66/463) 11.0% (177/1606)	7.6% (21/278) 8.3% (74/889)	1.81 [1.13, 2.89] 1.26 [0.97, 1.63]	0.24
Hypertension	Yes No	74.6% (2524/3384) 25.4% (860/3384)	12.1% (187/1546) 10.7% (56/523)	9.6% (82/856) 4.2% (13/311)	1.20 [0.94, 1.53] 2.56 [1.42, 4.62]	0.04
Hyperlipidemia	Yes No	70.6% (2390/3384) 29.4% (994/3384)	12.4% (183/1470) 10.0% (60/599)	8.5% (69/811) 7.3% (26/356)	1.42 [1.10, 1.85] 1.24 [0.80, 1.94]	0.57
Diabetes	Yes No	30.2% (1020/3382) 69.8% (2362/3382)	13.9% (87/626) 10.6% (155/1462)	12.6% (44/348) 6.1% (51/835)	1.06 [0.75, 1.48] 1.66 [1.22, 2.25]	0.08
Prior MI	Yes No	21.6% (727/3361) 78.4% (2634/3361)	13.7% (59/430) 11.2% (181/1623)	12.1% (30/247) 7.1% (65/915)	1.05 [0.70, 1.58] 1.49 [1.14, 1.96]	0.20
Prior intervention	Yes No	33.7% (1141/3382) 66.3% (2241/3382)	14.5% (103/712) 10.3% (140/1357)	12.4% (45/362) 6.1% (49/803)	1.14 [0.82, 1.58] 1.61 [1.17, 2.20]	0.17
Presentation	ACS Stable CAD	32.5% (1100/3383) 67.5% (2283/3383)	11.2% (71/632) 12.0% (172/1436)	7.7% (31/405) 8.4% (64/762)	1.27 [0.85, 1.91] 1.42 [1.08, 1.87]	0.69
No of target lesions	1 2	94.8% (3207/3383) 5.2% (176/3383)	11.6% (226/1956) 15.0% (17/113)	8.2% (91/1108) 6.8% (4/59)	1.35 [1.07, 1.70] 1.97 [0.69, 5.61]	0.44
P2Y12 loading	Clopidogrel/ticlopidine Prasugrel/ticagrelor	77.0% (2560/3323) 23.0% (763/3323)	11.2% (173/1549) 13.6% (67/492)	7.9% (72/906) 8.1% (19/234)	1.33 [1.02, 1.73] 1.66 [1.02, 2.70]	0.41
RVD	< median (2.65 mm) ≥ median	50.9% (1716/3372) 49.1% (1656/3372)	12.9% (139/1077) 10.5% (104/988)	11.3% (65/573) 5.1% (30/589)	1.12 [0.85, 1.47] 1.96 [1.32, 2.90]	0.03


Long-term safety of bioresorbable scaffolds: insights from a network meta-analysis including 91 trials

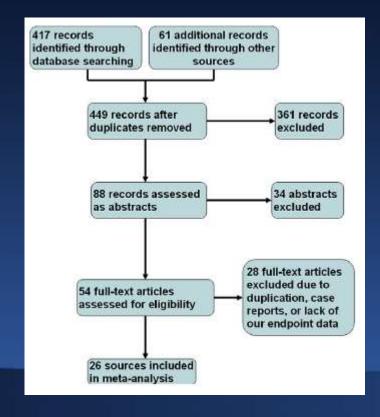

Kang et al; EuroInt 2017

Stent Thrombosis Network Meta-analysis Primary EP: ARC Definite ST (FU through 2 years) 49 RCTs, 50,844 pts


Consistency between direct and indirect estimates of 1-year stent thrombosis for CoCr-EES vs. BMS

Long-term safety of bioresorbable scaffolds: insights from a network meta-analysis including 91 trials

Between comparison variation in effect modifiers



Scaffold Thrombosis After Percutaneous Coronary Intervention With ABSORB Bioresorbable Vascular Scaffold

A Systematic Review and Meta-Analysis

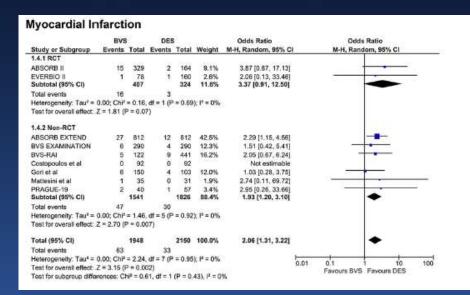
Michael J. Lipinski, MD, PhD, Ricardo O. Escarcega, MD, Nevin C. Baker, DO, Hadiya A. Benn, Michael A. Gaglia, Jr, MD, MSc, Rebecca Torguson, MPH, Ron Waksman, MD

Potential problem

Individual Small Trial

Meta-analysis of several such trials

If all the trials have the same systemic bias, all we have done is to tighten the confidence intervals!


Scaffold Thrombosis After Percutaneous Coronary Intervention With ABSORB Bioresorbable Vascular Scaffold

A Systematic Review and Meta-Analysis

Michael J. Lipinski, MD, PhD, Ricardo O. Escarcega, MD, Nevin C. Baker, DO, Hadiya A. Benn, Michael A. Gaglia, Jr, MD, MSc, Rebecca Torguson, MPH, Ron Waksman, MD

	BVS		DES			Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H,	Random, 95% CI
1.8.1 RCT								
ABSORB II	3	329	0	164	4.9%	3.53 [0.18, 68.68]	-	-
EVERBIO II	1	78	0	160	4.2%	6.21 [0.25, 154.27]	-	
Subtotal (95% CI)		407		324	9.1%	4.58 [0.52, 40.51]		
otal events	4		0					
deterogeneity: Tau* = 0	0.00; Chi ²	= 0.07,	df = 1 (P	= 0.80); # = 0%			
Test for overall effect:	Z = 1.37 (F	0.17)					
1.8.2 Non-RCT								
ABSORB EXTEND	8	812	2	812	17.9%	4.03 [0.85, 19.04]		•
SVS EXAMINATION	7	290	4	290	28.1%	1.77 [0.51, 6.11]		
BVS-RAI	3	122	6	441	22.0%	1.83 [0.45, 7.42]		-
Costopoulos et al	0	92	0	92		Not estimable		
Gori et al	4	150	3	103	18,7%	0.91 [0.20, 4.17]	-	-
Mattesini et al	0	35	0	31		Not estimable		8
PRAGUE-19	1	40	0	57	4.1%	4.37 [0.17, 109.97]	7	,
Subtotal (95% CI)		1541		1826	90.9%	1.91 [0.96, 3.80]		
Total events	23		15					
Heterogeneity: Tau ² = 6	0.00; Chi*	= 2.08,	df = 4 (P	= 0.72); P = 0%			
Test for overall effect: 2	Z = 1.84 (F	0.07	7)					
Total (95% CI)		1948		2150	100.0%	2.06 [1.07, 3.98]		•
Total events	27		15					
leterogeneity: Tau ² = 6	0.00; Chi ^a	= 2.72.	df = 6 (P	= 0.84); # = 0%		0.01 0.1	1 10 100

Conclusions

- There are 7 RCTs and at least 15-meta-analyses comparing BVS versus metallic DES (CoCr-EES or PtCR-EES).
- Meta-analyses differ for design (IPD vs aggregate data), number of studies included (4-7), summary statistics, lenght of fup (2-4 years).
- Notwithstanding the limited number of studies and the potential of duplicate results, meta-analyses have provided complimentary information that have enriched our knowledge on the relative safety and efficacy of BVS vs. metallic DES.
- Summary evidence suggest no difference in mortality between the two devices, but higher rates of ST and TV-related MI and TLR with BVS compared with metallic DES.